| # |
Algebra (L) |
Fundamental group (H) |
Generators of H (k) |
| 1 |
\( 4 A_2 \) |
\(Z_3^3\) |
|
| 2 |
\( 4 A_1+2 A_2 \) |
\(Z_3\) |
|
| 3 |
\( 2 A_1+3 A_2 \) |
\(Z_3^2\) |
|
| 4 |
\( 4 A_1+A_4 \) |
\(Z_1\) |
|
| 5 |
\( 3 A_1+A_5 \) |
\(Z_3\) |
|
| 6 |
\( A_3+A_5 \) |
\(Z_3\) |
|
| 7 |
\( A_8 \) |
\(Z_3\) |
|
| 8 |
\( 2 A_2+D_4 \) |
\(Z_3\) |
|
| 9 |
\( A_1+A_3+D_4 \) |
\(Z_1\) |
|
| 10 |
\( A_4+D_4 \) |
\(Z_1\) |
|
| 11 |
\( 3 A_1+D_5 \) |
\(Z_1\) |
|
| 12 |
\( A_1+D_7 \) |
\(Z_1\) |
|
| 13 |
\( 4 A_1+A_2+G_2 \) |
\(Z_1\) |
|
| 14 |
\( 2 A_1+2 A_2+G_2 \) |
\(Z_3\) |
|
| 15 |
\( 3 A_1+A_3+G_2 \) |
\(Z_1\) |
|
| 16 |
\( 2 A_3+G_2 \) |
\(Z_1\) |
|
| 17 |
\( 2 A_1+A_4+G_2 \) |
\(Z_1\) |
|
| 18 |
\( A_1+A_5+G_2 \) |
\(Z_3\) |
|
| 19 |
\( A_6+G_2 \) |
\(Z_1\) |
|
| 20 |
\( 2 A_1+D_4+G_2 \) |
\(Z_1\) |
|
| 21 |
\( A_2+D_4+G_2 \) |
\(Z_1\) |
|
| 22 |
\( A_1+D_5+G_2 \) |
\(Z_1\) |
|
| 23 |
\( D_6+G_2 \) |
\(Z_1\) |
|
| 24 |
\( 4 A_1+2 G_2 \) |
\(Z_1\) |
|
| 25 |
\( 2 A_1+A_2+2 G_2 \) |
\(Z_1\) |
|
| 26 |
\( 2 A_2+2 G_2 \) |
\(Z_3\) |
|
| 27 |
\( A_1+A_3+2 G_2 \) |
\(Z_1\) |
|
| 28 |
\( A_4+2 G_2 \) |
\(Z_1\) |
|
| 29 |
\( D_4+2 G_2 \) |
\(Z_1\) |
|
| 30 |
\( 2 A_1+3 G_2 \) |
\(Z_1\) |
|
| 31 |
\( A_2+3 G_2 \) |
\(Z_1\) |
|
| 32 |
\( 2 A_1+E_6 \) |
\(Z_3\) |
|
| 33 |
\( G_2+E_6 \) |
\(Z_3\) |
|
| 34 |
\( 3 A_1+2 A_2+A_1^3 \) |
\(Z_3\) |
|
| 35 |
\( 4 A_1+A_3+A_1^3 \) |
\(Z_2\) |
|
| 36 |
\( 2 A_2+A_3+A_1^3 \) |
\(Z_3\) |
|
| 37 |
\( A_1+2 A_3+A_1^3 \) |
\(Z_1\) |
|
| 38 |
\( A_1+2 A_3+A_1^3 \) |
\(Z_2\) |
|
| 39 |
\( 3 A_1+A_4+A_1^3 \) |
\(Z_1\) |
|
| 40 |
\( A_3+A_4+A_1^3 \) |
\(Z_1\) |
|
| 41 |
\( 2 A_1+A_5+A_1^3 \) |
\(Z_3\) |
|
| 42 |
\( 2 A_1+A_5+A_1^3 \) |
\(Z_6\) |
|
| 43 |
\( A_2+A_5+A_1^3 \) |
\(Z_3\) |
|
| 44 |
\( A_2+A_5+A_1^3 \) |
\(Z_3\) |
|
| 45 |
\( A_1+A_6+A_1^3 \) |
\(Z_1\) |
|
| 46 |
\( A_7+A_1^3 \) |
\(Z_1\) |
|
| 47 |
\( 3 A_1+D_4+A_1^3 \) |
\(Z_2\) |
|
| 48 |
\( A_1+A_2+D_4+A_1^3 \) |
\(Z_1\) |
|
| 49 |
\( A_3+D_4+A_1^3 \) |
\(Z_1\) |
|
| 50 |
\( 2 A_1+D_5+A_1^3 \) |
\(Z_1\) |
|
| 51 |
\( A_1+D_6+A_1^3 \) |
\(Z_1\) |
|
| 52 |
\( D_7+A_1^3 \) |
\(Z_1\) |
|
| 53 |
\( 3 A_1+A_2+G_2+A_1^3 \) |
\(Z_1\) |
|
| 54 |
\( A_1+2 A_2+G_2+A_1^3 \) |
\(Z_3\) |
|
| 55 |
\( 2 A_1+A_3+G_2+A_1^3 \) |
\(Z_1\) |
|
| 56 |
\( A_2+A_3+G_2+A_1^3 \) |
\(Z_1\) |
|
| 57 |
\( A_1+A_4+G_2+A_1^3 \) |
\(Z_1\) |
|
| 58 |
\( A_5+G_2+A_1^3 \) |
\(Z_1\) |
|
| 59 |
\( A_5+G_2+A_1^3 \) |
\(Z_3\) |
|
| 60 |
\( A_1+D_4+G_2+A_1^3 \) |
\(Z_1\) |
|
| 61 |
\( D_5+G_2+A_1^3 \) |
\(Z_1\) |
|
| 62 |
\( 3 A_1+2 G_2+A_1^3 \) |
\(Z_1\) |
|
| 63 |
\( A_1+A_2+2 G_2+A_1^3 \) |
\(Z_1\) |
|
| 64 |
\( A_3+2 G_2+A_1^3 \) |
\(Z_1\) |
|
| 65 |
\( A_1+E_6+A_1^3 \) |
\(Z_3\) |
|
| 66 |
\( E_7+A_1^3 \) |
\(Z_1\) |
|
| 67 |
\( 6 A_1+2 A_1^3 \) |
\(Z_2^2\) |
| 0 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
| 1 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
|
| 68 |
\( 4 A_1+A_2+2 A_1^3 \) |
\(Z_2\) |
|
| 69 |
\( 2 A_1+2 A_2+2 A_1^3 \) |
\(Z_3\) |
|
| 70 |
\( 2 A_1+2 A_2+2 A_1^3 \) |
\(Z_6\) |
|
| 71 |
\( 3 A_2+2 A_1^3 \) |
\(Z_3\) |
|
| 72 |
\( 3 A_2+2 A_1^3 \) |
\(Z_3\) |
|
| 73 |
\( 3 A_1+A_3+2 A_1^3 \) |
\(Z_2\) |
|
| 74 |
\( 3 A_1+A_3+2 A_1^3 \) |
\(Z_2\) |
|
| 75 |
\( 3 A_1+A_3+2 A_1^3 \) |
\(Z_2\) |
|
| 76 |
\( A_1+A_2+A_3+2 A_1^3 \) |
\(Z_1\) |
|
| 77 |
\( A_1+A_2+A_3+2 A_1^3 \) |
\(Z_2\) |
|
| 78 |
\( 2 A_3+2 A_1^3 \) |
\(Z_1\) |
|
| 79 |
\( 2 A_3+2 A_1^3 \) |
\(Z_2\) |
|
| 80 |
\( 2 A_1+A_4+2 A_1^3 \) |
\(Z_1\) |
|
| 81 |
\( 2 A_1+A_4+2 A_1^3 \) |
\(Z_2\) |
|
| 82 |
\( A_2+A_4+2 A_1^3 \) |
\(Z_1\) |
|
| 83 |
\( A_1+A_5+2 A_1^3 \) |
\(Z_1\) |
|
| 84 |
\( A_1+A_5+2 A_1^3 \) |
\(Z_3\) |
|
| 85 |
\( A_6+2 A_1^3 \) |
\(Z_1\) |
|
| 86 |
\( 2 A_1+D_4+2 A_1^3 \) |
\(Z_2\) |
|
| 87 |
\( A_2+D_4+2 A_1^3 \) |
\(Z_1\) |
|
| 88 |
\( A_2+D_4+2 A_1^3 \) |
\(Z_2\) |
|
| 89 |
\( A_1+D_5+2 A_1^3 \) |
\(Z_1\) |
|
| 90 |
\( A_1+D_5+2 A_1^3 \) |
\(Z_2\) |
|
| 91 |
\( D_6+2 A_1^3 \) |
\(Z_1\) |
|
| 92 |
\( D_6+2 A_1^3 \) |
\(Z_2\) |
|
| 93 |
\( 4 A_1+G_2+2 A_1^3 \) |
\(Z_2\) |
|
| 94 |
\( 2 A_1+A_2+G_2+2 A_1^3 \) |
\(Z_1\) |
|
| 95 |
\( 2 A_1+A_2+G_2+2 A_1^3 \) |
\(Z_2\) |
|
| 96 |
\( 2 A_2+G_2+2 A_1^3 \) |
\(Z_1\) |
|
| 97 |
\( 2 A_2+G_2+2 A_1^3 \) |
\(Z_3\) |
|
| 98 |
\( A_1+A_3+G_2+2 A_1^3 \) |
\(Z_1\) |
|
| 99 |
\( A_1+A_3+G_2+2 A_1^3 \) |
\(Z_2\) |
|
| 100 |
\( A_4+G_2+2 A_1^3 \) |
\(Z_1\) |
|
| 101 |
\( D_4+G_2+2 A_1^3 \) |
\(Z_1\) |
|
| 102 |
\( D_4+G_2+2 A_1^3 \) |
\(Z_2\) |
|
| 103 |
\( E_6+2 A_1^3 \) |
\(Z_1\) |
|
| 104 |
\( E_6+2 A_1^3 \) |
\(Z_3\) |
|
| 105 |
\( 5 A_1+3 A_1^3 \) |
\(Z_2^2\) |
| 0 |
0 |
0 |
1 |
1 |
0 |
1 |
1 |
| 0 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
|
| 106 |
\( 5 A_1+3 A_1^3 \) |
\(Z_2^2\) |
| 0 |
0 |
0 |
1 |
1 |
0 |
1 |
1 |
| 1 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
|
| 107 |
\( 3 A_1+A_2+3 A_1^3 \) |
\(Z_2\) |
|
| 108 |
\( 3 A_1+A_2+3 A_1^3 \) |
\(Z_2\) |
|
| 109 |
\( 3 A_1+A_2+3 A_1^3 \) |
\(Z_2^2\) |
| 0 |
1 |
1 |
0 |
0 |
1 |
1 |
| 1 |
0 |
1 |
0 |
1 |
0 |
1 |
|
| 110 |
\( A_1+2 A_2+3 A_1^3 \) |
\(Z_1\) |
|
| 111 |
\( A_1+2 A_2+3 A_1^3 \) |
\(Z_3\) |
|
| 112 |
\( 2 A_1+A_3+3 A_1^3 \) |
\(Z_2\) |
|
| 113 |
\( 2 A_1+A_3+3 A_1^3 \) |
\(Z_2\) |
|
| 114 |
\( 2 A_1+A_3+3 A_1^3 \) |
\(Z_2\) |
|
| 115 |
\( A_2+A_3+3 A_1^3 \) |
\(Z_1\) |
|
| 116 |
\( A_2+A_3+3 A_1^3 \) |
\(Z_2\) |
|
| 117 |
\( A_1+A_4+3 A_1^3 \) |
\(Z_1\) |
|
| 118 |
\( A_5+3 A_1^3 \) |
\(Z_1\) |
|
| 119 |
\( A_5+3 A_1^3 \) |
\(Z_2\) |
|
| 120 |
\( A_5+3 A_1^3 \) |
\(Z_3\) |
|
| 121 |
\( A_5+3 A_1^3 \) |
\(Z_6\) |
|
| 122 |
\( A_1+D_4+3 A_1^3 \) |
\(Z_2\) |
|
| 123 |
\( A_1+D_4+3 A_1^3 \) |
\(Z_2\) |
|
| 124 |
\( A_1+D_4+3 A_1^3 \) |
\(Z_2^2\) |
|
| 125 |
\( D_5+3 A_1^3 \) |
\(Z_1\) |
|
| 126 |
\( D_5+3 A_1^3 \) |
\(Z_2\) |
|
| 127 |
\( 4 A_1+A_2+A_2^3 \) |
\(Z_1\) |
|
| 128 |
\( 3 A_2+A_2^3 \) |
\(Z_3\) |
|
| 129 |
\( 3 A_1+A_3+A_2^3 \) |
\(Z_1\) |
|
| 130 |
\( A_1+A_2+A_3+A_2^3 \) |
\(Z_1\) |
|
| 131 |
\( 2 A_3+A_2^3 \) |
\(Z_1\) |
|
| 132 |
\( 2 A_1+A_4+A_2^3 \) |
\(Z_1\) |
|
| 133 |
\( A_2+A_4+A_2^3 \) |
\(Z_1\) |
|
| 134 |
\( A_1+A_5+A_2^3 \) |
\(Z_1\) |
|
| 135 |
\( A_6+A_2^3 \) |
\(Z_1\) |
|
| 136 |
\( 2 A_1+D_4+A_2^3 \) |
\(Z_1\) |
|
| 137 |
\( A_2+D_4+A_2^3 \) |
\(Z_1\) |
|
| 138 |
\( A_1+D_5+A_2^3 \) |
\(Z_1\) |
|
| 139 |
\( D_6+A_2^3 \) |
\(Z_1\) |
|
| 140 |
\( 4 A_1+G_2+A_2^3 \) |
\(Z_1\) |
|
| 141 |
\( 2 A_1+A_2+G_2+A_2^3 \) |
\(Z_1\) |
|
| 142 |
\( 2 A_2+G_2+A_2^3 \) |
\(Z_1\) |
|
| 143 |
\( A_1+A_3+G_2+A_2^3 \) |
\(Z_1\) |
|
| 144 |
\( A_4+G_2+A_2^3 \) |
\(Z_1\) |
|
| 145 |
\( D_4+G_2+A_2^3 \) |
\(Z_1\) |
|
| 146 |
\( E_6+A_2^3 \) |
\(Z_1\) |
|
| 147 |
\( 3 A_1+A_2+A_1^3+A_2^3 \) |
\(Z_1\) |
|
| 148 |
\( A_1+2 A_2+A_1^3+A_2^3 \) |
\(Z_1\) |
|
| 149 |
\( 2 A_1+A_3+A_1^3+A_2^3 \) |
\(Z_1\) |
|
| 150 |
\( A_2+A_3+A_1^3+A_2^3 \) |
\(Z_1\) |
|
| 151 |
\( A_1+A_4+A_1^3+A_2^3 \) |
\(Z_1\) |
|
| 152 |
\( A_5+A_1^3+A_2^3 \) |
\(Z_1\) |
|
| 153 |
\( A_1+D_4+A_1^3+A_2^3 \) |
\(Z_1\) |
|
| 154 |
\( D_5+A_1^3+A_2^3 \) |
\(Z_1\) |
|
| 155 |
\( 4 A_1+2 A_2^3 \) |
\(Z_1\) |
|
| 156 |
\( 2 A_1+A_2+2 A_2^3 \) |
\(Z_1\) |
|
| 157 |
\( 2 A_2+2 A_2^3 \) |
\(Z_1\) |
|
| 158 |
\( A_1+A_3+2 A_2^3 \) |
\(Z_1\) |
|
| 159 |
\( A_4+2 A_2^3 \) |
\(Z_1\) |
|
| 160 |
\( D_4+2 A_2^3 \) |
\(Z_1\) |
|
| 161 |
\( 5 A_1+A_3^3 \) |
\(Z_2\) |
|
| 162 |
\( 3 A_1+A_2+A_3^3 \) |
\(Z_1\) |
|
| 163 |
\( 3 A_1+A_2+A_3^3 \) |
\(Z_2\) |
|
| 164 |
\( A_1+2 A_2+A_3^3 \) |
\(Z_1\) |
|
| 165 |
\( 2 A_1+A_3+A_3^3 \) |
\(Z_1\) |
|
| 166 |
\( 2 A_1+A_3+A_3^3 \) |
\(Z_2\) |
|
| 167 |
\( 2 A_1+A_3+A_3^3 \) |
\(Z_2\) |
|
| 168 |
\( 2 A_1+A_3+A_3^3 \) |
\(Z_4\) |
|
| 169 |
\( A_2+A_3+A_3^3 \) |
\(Z_1\) |
|
| 170 |
\( A_2+A_3+A_3^3 \) |
\(Z_2\) |
|
| 171 |
\( A_1+A_4+A_3^3 \) |
\(Z_1\) |
|
| 172 |
\( A_5+A_3^3 \) |
\(Z_1\) |
|
| 173 |
\( A_1+D_4+A_3^3 \) |
\(Z_1\) |
|
| 174 |
\( A_1+D_4+A_3^3 \) |
\(Z_2\) |
|
| 175 |
\( D_5+A_3^3 \) |
\(Z_1\) |
|
| 176 |
\( D_5+A_3^3 \) |
\(Z_2\) |
|
| 177 |
\( 3 A_1+G_2+A_3^3 \) |
\(Z_1\) |
|
| 178 |
\( 3 A_1+G_2+A_3^3 \) |
\(Z_2\) |
|
| 179 |
\( A_1+A_2+G_2+A_3^3 \) |
\(Z_1\) |
|
| 180 |
\( A_3+G_2+A_3^3 \) |
\(Z_1\) |
|
| 181 |
\( A_3+G_2+A_3^3 \) |
\(Z_2\) |
|
| 182 |
\( 4 A_1+A_1^3+A_3^3 \) |
\(Z_2\) |
|
| 183 |
\( 4 A_1+A_1^3+A_3^3 \) |
\(Z_2\) |
|
| 184 |
\( 2 A_1+A_2+A_1^3+A_3^3 \) |
\(Z_1\) |
|
| 185 |
\( 2 A_1+A_2+A_1^3+A_3^3 \) |
\(Z_2\) |
|
| 186 |
\( 2 A_2+A_1^3+A_3^3 \) |
\(Z_1\) |
|
| 187 |
\( A_1+A_3+A_1^3+A_3^3 \) |
\(Z_1\) |
|
| 188 |
\( A_1+A_3+A_1^3+A_3^3 \) |
\(Z_2\) |
|
| 189 |
\( A_1+A_3+A_1^3+A_3^3 \) |
\(Z_2\) |
|
| 190 |
\( A_4+A_1^3+A_3^3 \) |
\(Z_1\) |
|
| 191 |
\( D_4+A_1^3+A_3^3 \) |
\(Z_1\) |
|
| 192 |
\( D_4+A_1^3+A_3^3 \) |
\(Z_2\) |
|
| 193 |
\( 4 A_1+A_4^3 \) |
\(Z_1\) |
|
| 194 |
\( 2 A_1+A_2+A_4^3 \) |
\(Z_1\) |
|
| 195 |
\( 2 A_2+A_4^3 \) |
\(Z_1\) |
|
| 196 |
\( A_1+A_3+A_4^3 \) |
\(Z_1\) |
|
| 197 |
\( A_4+A_4^3 \) |
\(Z_1\) |
|
| 198 |
\( D_4+A_4^3 \) |
\(Z_1\) |
|
| 199 |
\( 3 A_1+A_5^3 \) |
\(Z_1\) |
|
| 200 |
\( 3 A_1+A_5^3 \) |
\(Z_2\) |
|
| 201 |
\( A_1+A_2+A_5^3 \) |
\(Z_1\) |
|
| 202 |
\( A_3+A_5^3 \) |
\(Z_1\) |
|