| # |
Algebra (L) |
Fundamental group (H) |
Generators of H (k) |
| 1 |
\( 2 A_1+3 A_3 \) |
\(Z_2^3\) |
| 0 |
0 |
0 |
2 |
2 |
| 0 |
0 |
2 |
0 |
2 |
| 1 |
1 |
0 |
0 |
2 |
|
| 2 |
\( A_2+3 A_3 \) |
\(Z_2^2\) |
|
| 3 |
\( A_1+2 A_5 \) |
\(Z_2^2\) |
|
| 4 |
\( 2 A_2+A_7 \) |
\(Z_2\) |
|
| 5 |
\( A_1+2 A_2+A_3+B_3 \) |
\(Z_2\) |
|
| 6 |
\( 2 A_1+2 A_3+B_3 \) |
\(Z_2^2\) |
|
| 7 |
\( 2 A_2+A_4+B_3 \) |
\(1\) |
|
| 8 |
\( A_1+A_3+A_4+B_3 \) |
\(Z_2\) |
|
| 9 |
\( 2 A_4+B_3 \) |
\(1\) |
|
| 10 |
\( 3 A_1+A_5+B_3 \) |
\(Z_2^2\) |
|
| 11 |
\( A_1+A_2+A_5+B_3 \) |
\(Z_2\) |
|
| 12 |
\( A_3+A_5+B_3 \) |
\(Z_2\) |
|
| 13 |
\( A_3+A_5+B_3 \) |
\(Z_2\) |
|
| 14 |
\( A_2+A_6+B_3 \) |
\(1\) |
|
| 15 |
\( A_1+A_7+B_3 \) |
\(Z_2\) |
|
| 16 |
\( A_8+B_3 \) |
\(1\) |
|
| 17 |
\( 3 A_1+A_2+2 B_3 \) |
\(Z_2\) |
|
| 18 |
\( A_1+2 A_2+2 B_3 \) |
\(1\) |
|
| 19 |
\( 2 A_1+A_3+2 B_3 \) |
\(Z_2\) |
|
| 20 |
\( A_2+A_3+2 B_3 \) |
\(1\) |
|
| 21 |
\( A_2+A_3+2 B_3 \) |
\(Z_2\) |
|
| 22 |
\( A_1+A_4+2 B_3 \) |
\(1\) |
|
| 23 |
\( A_5+2 B_3 \) |
\(1\) |
|
| 24 |
\( 3 A_1+2 A_3+C_2 \) |
\(Z_2^3\) |
| 0 |
0 |
1 |
2 |
2 |
1 |
| 0 |
1 |
0 |
0 |
2 |
1 |
| 1 |
0 |
0 |
2 |
0 |
1 |
|
| 25 |
\( A_1+A_2+2 A_3+C_2 \) |
\(Z_2^2\) |
|
| 26 |
\( A_1+A_3+A_5+C_2 \) |
\(Z_2^2\) |
|
| 27 |
\( A_1+A_3+A_5+C_2 \) |
\(Z_2^2\) |
|
| 28 |
\( A_4+A_5+C_2 \) |
\(Z_2\) |
|
| 29 |
\( A_2+A_7+C_2 \) |
\(Z_2\) |
|
| 30 |
\( A_9+C_2 \) |
\(Z_2\) |
|
| 31 |
\( 2 A_1+2 A_2+B_3+C_2 \) |
\(Z_2\) |
|
| 32 |
\( 3 A_2+B_3+C_2 \) |
\(1\) |
|
| 33 |
\( 3 A_1+A_3+B_3+C_2 \) |
\(Z_2^2\) |
|
| 34 |
\( A_1+A_2+A_3+B_3+C_2 \) |
\(Z_2\) |
|
| 35 |
\( 2 A_3+B_3+C_2 \) |
\(Z_2\) |
|
| 36 |
\( 2 A_1+A_4+B_3+C_2 \) |
\(Z_2\) |
|
| 37 |
\( A_2+A_4+B_3+C_2 \) |
\(1\) |
|
| 38 |
\( A_1+A_5+B_3+C_2 \) |
\(Z_2\) |
|
| 39 |
\( A_6+B_3+C_2 \) |
\(1\) |
|
| 40 |
\( 4 A_1+A_3+2 C_2 \) |
\(Z_2^3\) |
| 0 |
0 |
0 |
0 |
2 |
1 |
1 |
| 0 |
0 |
1 |
1 |
0 |
1 |
1 |
| 1 |
1 |
0 |
1 |
0 |
0 |
1 |
|
| 41 |
\( 2 A_1+A_2+A_3+2 C_2 \) |
\(Z_2^2\) |
|
| 42 |
\( 2 A_2+A_3+2 C_2 \) |
\(Z_2\) |
|
| 43 |
\( A_1+2 A_3+2 C_2 \) |
\(Z_2^2\) |
|
| 44 |
\( A_1+2 A_3+2 C_2 \) |
\(Z_2^2\) |
|
| 45 |
\( A_3+A_4+2 C_2 \) |
\(Z_2\) |
|
| 46 |
\( 2 A_1+A_5+2 C_2 \) |
\(Z_2^2\) |
|
| 47 |
\( A_2+A_5+2 C_2 \) |
\(Z_2\) |
|
| 48 |
\( A_7+2 C_2 \) |
\(Z_2\) |
|
| 49 |
\( A_2+2 A_3+C_3 \) |
\(Z_2\) |
|
| 50 |
\( 2 A_2+A_4+C_3 \) |
\(1\) |
|
| 51 |
\( A_1+A_2+A_5+C_3 \) |
\(Z_2\) |
|
| 52 |
\( A_2+A_6+C_3 \) |
\(1\) |
|
| 53 |
\( A_1+A_7+C_3 \) |
\(Z_2\) |
|
| 54 |
\( A_1+2 A_2+B_3+C_3 \) |
\(1\) |
|
| 55 |
\( 2 A_1+A_3+B_3+C_3 \) |
\(Z_2\) |
|
| 56 |
\( A_2+A_3+B_3+C_3 \) |
\(1\) |
|
| 57 |
\( A_1+A_4+B_3+C_3 \) |
\(1\) |
|
| 58 |
\( A_5+B_3+C_3 \) |
\(1\) |
|
| 59 |
\( A_5+B_3+C_3 \) |
\(Z_2\) |
|
| 60 |
\( A_1+A_2+A_3+C_2+C_3 \) |
\(Z_2\) |
|
| 61 |
\( 2 A_3+C_2+C_3 \) |
\(Z_2\) |
|
| 62 |
\( A_2+A_4+C_2+C_3 \) |
\(1\) |
|
| 63 |
\( A_1+A_5+C_2+C_3 \) |
\(Z_2\) |
|
| 64 |
\( A_1+A_5+C_2+C_3 \) |
\(Z_2\) |
|
| 65 |
\( A_6+C_2+C_3 \) |
\(1\) |
|
| 66 |
\( A_1+2 A_2+2 C_3 \) |
\(1\) |
|
| 67 |
\( 2 A_1+A_3+2 C_3 \) |
\(Z_2\) |
|
| 68 |
\( A_2+A_3+2 C_3 \) |
\(1\) |
|
| 69 |
\( A_1+A_4+2 C_3 \) |
\(1\) |
|
| 70 |
\( A_5+2 C_3 \) |
\(1\) |
|
| 71 |
\( 2 A_1+A_2+A_3+C_4 \) |
\(Z_2^2\) |
|
| 72 |
\( 2 A_2+A_3+C_4 \) |
\(Z_2\) |
|
| 73 |
\( A_1+2 A_3+C_4 \) |
\(Z_2^2\) |
|
| 74 |
\( 2 A_1+A_5+C_4 \) |
\(Z_2^2\) |
|
| 75 |
\( 4 A_1+B_3+C_4 \) |
\(Z_2^2\) |
|
| 76 |
\( 2 A_1+A_2+B_3+C_4 \) |
\(Z_2\) |
|
| 77 |
\( 2 A_2+B_3+C_4 \) |
\(1\) |
|
| 78 |
\( A_1+A_3+B_3+C_4 \) |
\(Z_2\) |
|
| 79 |
\( A_1+A_3+B_3+C_4 \) |
\(Z_2\) |
|
| 80 |
\( A_4+B_3+C_4 \) |
\(1\) |
|
| 81 |
\( 3 A_1+A_2+C_2+C_4 \) |
\(Z_2^2\) |
|
| 82 |
\( A_1+2 A_2+C_2+C_4 \) |
\(Z_2\) |
|
| 83 |
\( 2 A_1+A_3+C_2+C_4 \) |
\(Z_2^2\) |
|
| 84 |
\( 2 A_1+A_3+C_2+C_4 \) |
\(Z_2^2\) |
|
| 85 |
\( A_2+A_3+C_2+C_4 \) |
\(Z_2\) |
|
| 86 |
\( A_1+A_4+C_2+C_4 \) |
\(Z_2\) |
|
| 87 |
\( A_5+C_2+C_4 \) |
\(Z_2\) |
|
| 88 |
\( 2 A_1+A_2+C_3+C_4 \) |
\(Z_2\) |
|
| 89 |
\( 2 A_2+C_3+C_4 \) |
\(1\) |
|
| 90 |
\( A_1+A_3+C_3+C_4 \) |
\(Z_2\) |
|
| 91 |
\( 3 A_1+2 C_4 \) |
\(Z_2^2\) |
|
| 92 |
\( A_1+A_2+2 C_4 \) |
\(Z_2\) |
|
| 93 |
\( A_3+2 C_4 \) |
\(Z_2^2\) |
|
| 94 |
\( A_1+A_5+C_5 \) |
\(Z_2\) |
|
| 95 |
\( A_1+A_2+B_3+C_5 \) |
\(1\) |
|
| 96 |
\( A_3+B_3+C_5 \) |
\(1\) |
|
| 97 |
\( 2 A_2+C_2+C_5 \) |
\(1\) |
|
| 98 |
\( A_1+A_3+C_2+C_5 \) |
\(Z_2\) |
|
| 99 |
\( A_4+C_2+C_5 \) |
\(1\) |
|
| 100 |
\( A_1+A_2+C_3+C_5 \) |
\(1\) |
|
| 101 |
\( 2 A_1+C_4+C_5 \) |
\(Z_2\) |
|
| 102 |
\( A_1+2 C_5 \) |
\(1\) |
|
| 103 |
\( A_1+2 A_2+C_6 \) |
\(Z_2\) |
|
| 104 |
\( 2 A_1+A_3+C_6 \) |
\(Z_2^2\) |
|
| 105 |
\( A_1+A_4+C_6 \) |
\(Z_2\) |
|
| 106 |
\( A_5+C_6 \) |
\(Z_2\) |
|
| 107 |
\( 2 A_1+B_3+C_6 \) |
\(Z_2\) |
|
| 108 |
\( A_2+B_3+C_6 \) |
\(1\) |
|
| 109 |
\( A_2+B_3+C_6 \) |
\(Z_2\) |
|
| 110 |
\( 3 A_1+C_2+C_6 \) |
\(Z_2^2\) |
|
| 111 |
\( A_1+A_2+C_2+C_6 \) |
\(Z_2\) |
|
| 112 |
\( A_1+A_2+C_2+C_6 \) |
\(Z_2\) |
|
| 113 |
\( A_3+C_2+C_6 \) |
\(Z_2\) |
|
| 114 |
\( 2 A_1+C_3+C_6 \) |
\(Z_2\) |
|
| 115 |
\( A_2+C_3+C_6 \) |
\(1\) |
|
| 116 |
\( A_1+C_4+C_6 \) |
\(Z_2\) |
|
| 117 |
\( C_5+C_6 \) |
\(1\) |
|
| 118 |
\( 2 A_2+C_7 \) |
\(1\) |
|
| 119 |
\( A_1+B_3+C_7 \) |
\(1\) |
|
| 120 |
\( A_2+C_2+C_7 \) |
\(1\) |
|
| 121 |
\( A_1+C_3+C_7 \) |
\(1\) |
|
| 122 |
\( A_1+A_2+C_8 \) |
\(Z_2\) |
|
| 123 |
\( B_3+C_8 \) |
\(1\) |
|
| 124 |
\( A_1+C_2+C_8 \) |
\(Z_2\) |
|
| 125 |
\( C_3+C_8 \) |
\(Z_2\) |
|
| 126 |
\( C_2+C_9 \) |
\(1\) |
|
| 127 |
\( A_1+C_{10} \) |
\(Z_2\) |
|
| 128 |
\( A_1+2 B_3+D_4 \) |
\(Z_2\) |
|
| 129 |
\( 2 A_1+A_3+C_2+D_4 \) |
\(Z_2^3\) |
| 0 |
0 |
2 |
0 |
v |
| 0 |
1 |
0 |
1 |
s |
| 1 |
0 |
0 |
1 |
v |
|
| 130 |
\( A_2+B_3+C_2+D_4 \) |
\(Z_2\) |
|
| 131 |
\( 3 A_1+2 C_2+D_4 \) |
\(Z_2^3\) |
| 0 |
0 |
0 |
1 |
1 |
c |
| 0 |
0 |
1 |
0 |
1 |
v |
| 1 |
1 |
0 |
0 |
0 |
c |
|
| 132 |
\( A_1+A_2+2 C_2+D_4 \) |
\(Z_2^2\) |
|
| 133 |
\( A_3+2 C_2+D_4 \) |
\(Z_2^2\) |
|
| 134 |
\( A_1+B_3+C_3+D_4 \) |
\(Z_2\) |
|
| 135 |
\( A_1+C_2+C_4+D_4 \) |
\(Z_2^2\) |
|
| 136 |
\( 3 A_1+2 D_4 \) |
\(Z_2^4\) |
| 0 |
0 |
0 |
s |
c |
| 0 |
0 |
0 |
c |
s |
| 0 |
1 |
1 |
0 |
v |
| 1 |
0 |
1 |
0 |
c |
|
| 137 |
\( A_1+A_2+B_3+D_5 \) |
\(Z_2\) |
|
| 138 |
\( 2 B_3+D_5 \) |
\(1\) |
|
| 139 |
\( 2 B_3+D_5 \) |
\(Z_2\) |
|
| 140 |
\( A_1+A_3+C_2+D_5 \) |
\(Z_2^2\) |
|
| 141 |
\( A_1+B_3+C_2+D_5 \) |
\(Z_2\) |
|
| 142 |
\( 2 A_1+2 C_2+D_5 \) |
\(Z_2^2\) |
|
| 143 |
\( A_2+2 C_2+D_5 \) |
\(Z_2\) |
|
| 144 |
\( B_3+C_3+D_5 \) |
\(1\) |
|
| 145 |
\( A_1+C_2+C_3+D_5 \) |
\(Z_2\) |
|
| 146 |
\( 2 A_1+C_4+D_5 \) |
\(Z_2^2\) |
|
| 147 |
\( C_2+C_4+D_5 \) |
\(Z_2\) |
|
| 148 |
\( 2 A_1+A_3+D_6 \) |
\(Z_2^3\) |
|
| 149 |
\( A_2+B_3+D_6 \) |
\(Z_2\) |
|
| 150 |
\( 3 A_1+C_2+D_6 \) |
\(Z_2^3\) |
| 0 |
0 |
0 |
1 |
s |
| 0 |
0 |
1 |
0 |
c |
| 1 |
1 |
0 |
0 |
v |
|
| 151 |
\( A_1+A_2+C_2+D_6 \) |
\(Z_2^2\) |
|
| 152 |
\( A_3+C_2+D_6 \) |
\(Z_2^2\) |
|
| 153 |
\( B_3+C_2+D_6 \) |
\(Z_2\) |
|
| 154 |
\( B_3+C_2+D_6 \) |
\(Z_2\) |
|
| 155 |
\( A_1+2 C_2+D_6 \) |
\(Z_2^2\) |
|
| 156 |
\( C_2+C_3+D_6 \) |
\(Z_2\) |
|
| 157 |
\( A_1+C_4+D_6 \) |
\(Z_2^2\) |
|
| 158 |
\( A_1+B_3+D_7 \) |
\(Z_2\) |
|
| 159 |
\( 2 C_2+D_7 \) |
\(Z_2\) |
|
| 160 |
\( A_1+C_2+D_8 \) |
\(Z_2^2\) |
|
| 161 |
\( A_1+3 A_2+F_4 \) |
\(1\) |
|
| 162 |
\( 2 A_2+A_3+F_4 \) |
\(1\) |
|
| 163 |
\( A_1+A_2+A_4+F_4 \) |
\(1\) |
|
| 164 |
\( A_2+A_5+F_4 \) |
\(1\) |
|
| 165 |
\( A_1+A_6+F_4 \) |
\(1\) |
|
| 166 |
\( 2 A_1+A_2+B_3+F_4 \) |
\(1\) |
|
| 167 |
\( 2 A_2+B_3+F_4 \) |
\(1\) |
|
| 168 |
\( A_1+A_3+B_3+F_4 \) |
\(1\) |
|
| 169 |
\( A_4+B_3+F_4 \) |
\(1\) |
|
| 170 |
\( A_1+2 A_2+C_2+F_4 \) |
\(1\) |
|
| 171 |
\( A_2+A_3+C_2+F_4 \) |
\(1\) |
|
| 172 |
\( A_1+A_4+C_2+F_4 \) |
\(1\) |
|
| 173 |
\( A_5+C_2+F_4 \) |
\(1\) |
|
| 174 |
\( 2 A_1+A_2+C_3+F_4 \) |
\(1\) |
|
| 175 |
\( 2 A_2+C_3+F_4 \) |
\(1\) |
|
| 176 |
\( A_1+A_3+C_3+F_4 \) |
\(1\) |
|
| 177 |
\( A_4+C_3+F_4 \) |
\(1\) |
|
| 178 |
\( A_1+A_2+C_4+F_4 \) |
\(1\) |
|
| 179 |
\( 2 A_1+C_5+F_4 \) |
\(1\) |
|
| 180 |
\( A_2+C_5+F_4 \) |
\(1\) |
|
| 181 |
\( A_1+C_6+F_4 \) |
\(1\) |
|
| 182 |
\( C_7+F_4 \) |
\(1\) |
|
| 183 |
\( B_3+D_4+F_4 \) |
\(1\) |
|
| 184 |
\( C_2+D_5+F_4 \) |
\(1\) |
|
| 185 |
\( 3 A_1+2 F_4 \) |
\(1\) |
|
| 186 |
\( A_1+A_2+2 F_4 \) |
\(1\) |
|
| 187 |
\( A_3+2 F_4 \) |
\(1\) |
|
| 188 |
\( A_2+B_3+E_6 \) |
\(1\) |
|
| 189 |
\( B_3+C_2+E_6 \) |
\(1\) |
|
| 190 |
\( C_2+C_3+E_6 \) |
\(1\) |
|
| 191 |
\( C_5+E_6 \) |
\(1\) |
|
| 192 |
\( A_1+F_4+E_6 \) |
\(1\) |
|
| 193 |
\( A_1+B_3+E_7 \) |
\(Z_2\) |
|
| 194 |
\( A_2+C_2+E_7 \) |
\(Z_2\) |
|
| 195 |
\( 2 C_2+E_7 \) |
\(Z_2\) |
|
| 196 |
\( A_1+C_3+E_7 \) |
\(Z_2\) |
|
| 197 |
\( F_4+E_7 \) |
\(1\) |
|
| 198 |
\( B_3+E_8 \) |
\(1\) |
|
| 199 |
\( 2 A_2+2 A_3+A_1^2 \) |
\(Z_2\) |
|
| 200 |
\( 3 A_2+A_4+A_1^2 \) |
\(1\) |
|
| 201 |
\( A_1+2 A_2+A_5+A_1^2 \) |
\(Z_2\) |
|
| 202 |
\( 2 A_1+A_3+A_5+A_1^2 \) |
\(Z_2^2\) |
|
| 203 |
\( A_1+A_4+A_5+A_1^2 \) |
\(Z_2\) |
|
| 204 |
\( 2 A_5+A_1^2 \) |
\(Z_2\) |
|
| 205 |
\( 2 A_2+A_6+A_1^2 \) |
\(1\) |
|
| 206 |
\( A_1+A_2+A_7+A_1^2 \) |
\(Z_2\) |
|
| 207 |
\( A_1+A_9+A_1^2 \) |
\(Z_2\) |
|
| 208 |
\( 3 A_1+2 A_2+B_3+A_1^2 \) |
\(Z_2\) |
|
| 209 |
\( 2 A_1+A_2+A_3+B_3+A_1^2 \) |
\(Z_2\) |
|
| 210 |
\( 2 A_2+A_3+B_3+A_1^2 \) |
\(1\) |
|
| 211 |
\( A_1+2 A_3+B_3+A_1^2 \) |
\(Z_2\) |
|
| 212 |
\( A_1+A_2+A_4+B_3+A_1^2 \) |
\(1\) |
|
| 213 |
\( A_3+A_4+B_3+A_1^2 \) |
\(1\) |
|
| 214 |
\( 2 A_1+A_5+B_3+A_1^2 \) |
\(Z_2\) |
|
| 215 |
\( 2 A_1+A_5+B_3+A_1^2 \) |
\(Z_2\) |
|
| 216 |
\( A_2+A_5+B_3+A_1^2 \) |
\(1\) |
|
| 217 |
\( A_2+A_5+B_3+A_1^2 \) |
\(Z_2\) |
|
| 218 |
\( A_1+A_6+B_3+A_1^2 \) |
\(1\) |
|
| 219 |
\( A_7+B_3+A_1^2 \) |
\(1\) |
|
| 220 |
\( A_1+2 A_2+A_3+C_2+A_1^2 \) |
\(Z_2\) |
|
| 221 |
\( 2 A_1+2 A_3+C_2+A_1^2 \) |
\(Z_2^2\) |
|
| 222 |
\( 2 A_2+A_4+C_2+A_1^2 \) |
\(1\) |
|
| 223 |
\( A_1+A_3+A_4+C_2+A_1^2 \) |
\(Z_2\) |
|
| 224 |
\( 2 A_4+C_2+A_1^2 \) |
\(1\) |
|
| 225 |
\( 3 A_1+A_5+C_2+A_1^2 \) |
\(Z_2^2\) |
|
| 226 |
\( 3 A_1+A_5+C_2+A_1^2 \) |
\(Z_2^2\) |
|
| 227 |
\( A_1+A_2+A_5+C_2+A_1^2 \) |
\(Z_2\) |
|
| 228 |
\( A_3+A_5+C_2+A_1^2 \) |
\(Z_2\) |
|
| 229 |
\( A_3+A_5+C_2+A_1^2 \) |
\(Z_2\) |
|
| 230 |
\( A_2+A_6+C_2+A_1^2 \) |
\(1\) |
|
| 231 |
\( A_1+A_7+C_2+A_1^2 \) |
\(Z_2\) |
|
| 232 |
\( A_1+A_7+C_2+A_1^2 \) |
\(Z_2\) |
|
| 233 |
\( A_8+C_2+A_1^2 \) |
\(1\) |
|
| 234 |
\( A_1+3 A_2+C_3+A_1^2 \) |
\(1\) |
|
| 235 |
\( 2 A_2+A_3+C_3+A_1^2 \) |
\(1\) |
|
| 236 |
\( A_1+A_2+A_4+C_3+A_1^2 \) |
\(1\) |
|
| 237 |
\( 2 A_1+A_5+C_3+A_1^2 \) |
\(Z_2\) |
|
| 238 |
\( A_2+A_5+C_3+A_1^2 \) |
\(1\) |
|
| 239 |
\( A_1+A_6+C_3+A_1^2 \) |
\(1\) |
|
| 240 |
\( A_7+C_3+A_1^2 \) |
\(Z_2\) |
|
| 241 |
\( 2 A_1+2 A_2+C_4+A_1^2 \) |
\(Z_2\) |
|
| 242 |
\( 3 A_1+A_3+C_4+A_1^2 \) |
\(Z_2^2\) |
|
| 243 |
\( A_1+A_2+A_3+C_4+A_1^2 \) |
\(Z_2\) |
|
| 244 |
\( 2 A_1+A_4+C_4+A_1^2 \) |
\(Z_2\) |
|
| 245 |
\( A_1+A_5+C_4+A_1^2 \) |
\(Z_2\) |
|
| 246 |
\( A_1+A_5+C_4+A_1^2 \) |
\(Z_2\) |
|
| 247 |
\( A_1+2 A_2+C_5+A_1^2 \) |
\(1\) |
|
| 248 |
\( A_1+A_4+C_5+A_1^2 \) |
\(1\) |
|
| 249 |
\( A_5+C_5+A_1^2 \) |
\(1\) |
|
| 250 |
\( 2 A_1+A_2+C_6+A_1^2 \) |
\(Z_2\) |
|
| 251 |
\( 2 A_2+C_6+A_1^2 \) |
\(1\) |
|
| 252 |
\( A_1+A_3+C_6+A_1^2 \) |
\(Z_2\) |
|
| 253 |
\( A_1+A_3+C_6+A_1^2 \) |
\(Z_2\) |
|
| 254 |
\( A_4+C_6+A_1^2 \) |
\(1\) |
|
| 255 |
\( A_1+A_2+C_7+A_1^2 \) |
\(1\) |
|
| 256 |
\( 2 A_1+C_8+A_1^2 \) |
\(Z_2\) |
|
| 257 |
\( 2 A_1+C_8+A_1^2 \) |
\(Z_2\) |
|
| 258 |
\( A_2+C_8+A_1^2 \) |
\(Z_2\) |
|
| 259 |
\( A_1+C_9+A_1^2 \) |
\(1\) |
|
| 260 |
\( C_{10}+A_1^2 \) |
\(1\) |
|
| 261 |
\( A_1+A_2+B_3+D_4+A_1^2 \) |
\(Z_2\) |
|
| 262 |
\( A_1+A_3+C_2+D_4+A_1^2 \) |
\(Z_2^2\) |
|
| 263 |
\( 2 A_1+C_4+D_4+A_1^2 \) |
\(Z_2^2\) |
|
| 264 |
\( 2 A_1+B_3+D_5+A_1^2 \) |
\(Z_2\) |
|
| 265 |
\( A_2+B_3+D_5+A_1^2 \) |
\(1\) |
|
| 266 |
\( A_1+A_2+C_2+D_5+A_1^2 \) |
\(Z_2\) |
|
| 267 |
\( A_1+C_4+D_5+A_1^2 \) |
\(Z_2\) |
|
| 268 |
\( C_5+D_5+A_1^2 \) |
\(1\) |
|
| 269 |
\( 2 D_5+A_1^2 \) |
\(Z_2\) |
|
| 270 |
\( A_1+A_3+D_6+A_1^2 \) |
\(Z_2^2\) |
|
| 271 |
\( A_1+B_3+D_6+A_1^2 \) |
\(Z_2\) |
|
| 272 |
\( 2 A_1+C_2+D_6+A_1^2 \) |
\(Z_2^2\) |
|
| 273 |
\( A_2+C_2+D_6+A_1^2 \) |
\(Z_2\) |
|
| 274 |
\( A_1+C_3+D_6+A_1^2 \) |
\(Z_2\) |
|
| 275 |
\( C_4+D_6+A_1^2 \) |
\(Z_2\) |
|
| 276 |
\( B_3+D_7+A_1^2 \) |
\(1\) |
|
| 277 |
\( A_1+C_2+D_7+A_1^2 \) |
\(Z_2\) |
|
| 278 |
\( 2 A_1+D_8+A_1^2 \) |
\(Z_2^2\) |
|
| 279 |
\( C_2+D_8+A_1^2 \) |
\(Z_2\) |
|
| 280 |
\( 2 A_1+2 A_2+F_4+A_1^2 \) |
\(1\) |
|
| 281 |
\( A_1+A_2+A_3+F_4+A_1^2 \) |
\(1\) |
|
| 282 |
\( 2 A_1+A_4+F_4+A_1^2 \) |
\(1\) |
|
| 283 |
\( A_2+A_4+F_4+A_1^2 \) |
\(1\) |
|
| 284 |
\( A_1+A_5+F_4+A_1^2 \) |
\(1\) |
|
| 285 |
\( A_6+F_4+A_1^2 \) |
\(1\) |
|
| 286 |
\( A_1+D_5+F_4+A_1^2 \) |
\(1\) |
|
| 287 |
\( D_6+F_4+A_1^2 \) |
\(1\) |
|
| 288 |
\( A_4+E_6+A_1^2 \) |
\(1\) |
|
| 289 |
\( A_1+B_3+E_6+A_1^2 \) |
\(1\) |
|
| 290 |
\( A_2+C_2+E_6+A_1^2 \) |
\(1\) |
|
| 291 |
\( A_1+C_3+E_6+A_1^2 \) |
\(1\) |
|
| 292 |
\( C_4+E_6+A_1^2 \) |
\(1\) |
|
| 293 |
\( F_4+E_6+A_1^2 \) |
\(1\) |
|
| 294 |
\( A_1+A_2+E_7+A_1^2 \) |
\(Z_2\) |
|
| 295 |
\( B_3+E_7+A_1^2 \) |
\(1\) |
|
| 296 |
\( B_3+E_7+A_1^2 \) |
\(Z_2\) |
|
| 297 |
\( A_1+C_2+E_7+A_1^2 \) |
\(Z_2\) |
|
| 298 |
\( C_3+E_7+A_1^2 \) |
\(1\) |
|
| 299 |
\( C_2+E_8+A_1^2 \) |
\(1\) |
|
| 300 |
\( 2 A_1+2 A_2+A_3+2 A_1^2 \) |
\(Z_2\) |
|
| 301 |
\( A_1+A_2+2 A_3+2 A_1^2 \) |
\(Z_4\) |
|
| 302 |
\( A_1+2 A_2+A_4+2 A_1^2 \) |
\(1\) |
|
| 303 |
\( A_1+2 A_4+2 A_1^2 \) |
\(1\) |
|
| 304 |
\( 2 A_1+A_2+A_5+2 A_1^2 \) |
\(Z_2\) |
|
| 305 |
\( A_1+A_3+A_5+2 A_1^2 \) |
\(Z_2\) |
|
| 306 |
\( A_4+A_5+2 A_1^2 \) |
\(1\) |
|
| 307 |
\( A_1+A_2+A_6+2 A_1^2 \) |
\(1\) |
|
| 308 |
\( 2 A_1+A_7+2 A_1^2 \) |
\(Z_2\) |
|
| 309 |
\( 2 A_1+A_7+2 A_1^2 \) |
\(Z_4\) |
|
| 310 |
\( A_2+A_7+2 A_1^2 \) |
\(Z_4\) |
|
| 311 |
\( A_1+A_8+2 A_1^2 \) |
\(1\) |
|
| 312 |
\( A_9+2 A_1^2 \) |
\(1\) |
|
| 313 |
\( 2 A_1+A_2+D_5+2 A_1^2 \) |
\(Z_2\) |
|
| 314 |
\( A_4+D_5+2 A_1^2 \) |
\(1\) |
|
| 315 |
\( D_4+D_5+2 A_1^2 \) |
\(Z_2\) |
|
| 316 |
\( A_1+A_2+D_6+2 A_1^2 \) |
\(Z_2\) |
|
| 317 |
\( A_1+D_8+2 A_1^2 \) |
\(Z_2\) |
|
| 318 |
\( D_9+2 A_1^2 \) |
\(1\) |
|
| 319 |
\( A_1+A_2+E_6+2 A_1^2 \) |
\(1\) |
|
| 320 |
\( A_3+E_6+2 A_1^2 \) |
\(1\) |
|
| 321 |
\( 2 A_1+E_7+2 A_1^2 \) |
\(Z_2\) |
|
| 322 |
\( A_2+E_7+2 A_1^2 \) |
\(1\) |
|
| 323 |
\( A_1+E_8+2 A_1^2 \) |
\(1\) |
|
| 324 |
\( A_1+4 A_2+A_2^2 \) |
\(Z_3\) |
|
| 325 |
\( A_1+2 A_2+A_4+A_2^2 \) |
\(1\) |
|
| 326 |
\( A_1+2 A_4+A_2^2 \) |
\(1\) |
|
| 327 |
\( 2 A_2+A_5+A_2^2 \) |
\(Z_3\) |
|
| 328 |
\( A_1+A_3+A_5+A_2^2 \) |
\(Z_2\) |
|
| 329 |
\( A_4+A_5+A_2^2 \) |
\(1\) |
|
| 330 |
\( A_1+A_2+A_6+A_2^2 \) |
\(1\) |
|
| 331 |
\( 2 A_1+A_7+A_2^2 \) |
\(Z_2\) |
|
| 332 |
\( A_1+A_8+A_2^2 \) |
\(1\) |
|
| 333 |
\( A_9+A_2^2 \) |
\(1\) |
|
| 334 |
\( 3 A_1+A_3+B_3+A_2^2 \) |
\(Z_2\) |
|
| 335 |
\( A_1+A_2+A_3+B_3+A_2^2 \) |
\(1\) |
|
| 336 |
\( 2 A_3+B_3+A_2^2 \) |
\(1\) |
|
| 337 |
\( 2 A_1+A_4+B_3+A_2^2 \) |
\(1\) |
|
| 338 |
\( A_2+A_4+B_3+A_2^2 \) |
\(1\) |
|
| 339 |
\( A_1+A_5+B_3+A_2^2 \) |
\(1\) |
|
| 340 |
\( A_6+B_3+A_2^2 \) |
\(1\) |
|
| 341 |
\( 2 A_2+A_3+C_2+A_2^2 \) |
\(1\) |
|
| 342 |
\( A_1+2 A_3+C_2+A_2^2 \) |
\(Z_2\) |
|
| 343 |
\( A_1+A_2+A_4+C_2+A_2^2 \) |
\(1\) |
|
| 344 |
\( A_3+A_4+C_2+A_2^2 \) |
\(1\) |
|
| 345 |
\( 2 A_1+A_5+C_2+A_2^2 \) |
\(Z_2\) |
|
| 346 |
\( A_2+A_5+C_2+A_2^2 \) |
\(1\) |
|
| 347 |
\( A_1+A_6+C_2+A_2^2 \) |
\(1\) |
|
| 348 |
\( A_7+C_2+A_2^2 \) |
\(1\) |
|
| 349 |
\( 2 A_1+2 A_2+C_3+A_2^2 \) |
\(1\) |
|
| 350 |
\( A_1+A_2+A_3+C_3+A_2^2 \) |
\(1\) |
|
| 351 |
\( 2 A_1+A_4+C_3+A_2^2 \) |
\(1\) |
|
| 352 |
\( A_2+A_4+C_3+A_2^2 \) |
\(1\) |
|
| 353 |
\( A_1+A_5+C_3+A_2^2 \) |
\(1\) |
|
| 354 |
\( A_6+C_3+A_2^2 \) |
\(1\) |
|
| 355 |
\( 2 A_1+A_3+C_4+A_2^2 \) |
\(Z_2\) |
|
| 356 |
\( A_1+A_4+C_4+A_2^2 \) |
\(1\) |
|
| 357 |
\( A_5+C_4+A_2^2 \) |
\(1\) |
|
| 358 |
\( 2 A_1+A_2+C_5+A_2^2 \) |
\(1\) |
|
| 359 |
\( 2 A_2+C_5+A_2^2 \) |
\(1\) |
|
| 360 |
\( A_1+A_3+C_5+A_2^2 \) |
\(1\) |
|
| 361 |
\( A_4+C_5+A_2^2 \) |
\(1\) |
|
| 362 |
\( 3 A_1+C_6+A_2^2 \) |
\(Z_2\) |
|
| 363 |
\( A_1+A_2+C_6+A_2^2 \) |
\(1\) |
|
| 364 |
\( A_3+C_6+A_2^2 \) |
\(1\) |
|
| 365 |
\( 2 A_1+C_7+A_2^2 \) |
\(1\) |
|
| 366 |
\( A_2+C_7+A_2^2 \) |
\(1\) |
|
| 367 |
\( A_1+C_8+A_2^2 \) |
\(1\) |
|
| 368 |
\( C_9+A_2^2 \) |
\(1\) |
|
| 369 |
\( A_2+B_3+D_4+A_2^2 \) |
\(1\) |
|
| 370 |
\( C_5+D_4+A_2^2 \) |
\(1\) |
|
| 371 |
\( A_4+D_5+A_2^2 \) |
\(1\) |
|
| 372 |
\( A_1+B_3+D_5+A_2^2 \) |
\(1\) |
|
| 373 |
\( A_2+C_2+D_5+A_2^2 \) |
\(1\) |
|
| 374 |
\( A_1+C_3+D_5+A_2^2 \) |
\(1\) |
|
| 375 |
\( C_4+D_5+A_2^2 \) |
\(1\) |
|
| 376 |
\( B_3+D_6+A_2^2 \) |
\(1\) |
|
| 377 |
\( C_3+D_6+A_2^2 \) |
\(1\) |
|
| 378 |
\( C_2+D_7+A_2^2 \) |
\(1\) |
|
| 379 |
\( D_9+A_2^2 \) |
\(1\) |
|
| 380 |
\( 3 A_1+A_2+F_4+A_2^2 \) |
\(1\) |
|
| 381 |
\( 2 A_1+A_3+F_4+A_2^2 \) |
\(1\) |
|
| 382 |
\( A_2+A_3+F_4+A_2^2 \) |
\(1\) |
|
| 383 |
\( A_1+A_4+F_4+A_2^2 \) |
\(1\) |
|
| 384 |
\( A_5+F_4+A_2^2 \) |
\(1\) |
|
| 385 |
\( A_1+D_4+F_4+A_2^2 \) |
\(1\) |
|
| 386 |
\( D_5+F_4+A_2^2 \) |
\(1\) |
|
| 387 |
\( A_1+A_2+E_6+A_2^2 \) |
\(1\) |
|
| 388 |
\( A_3+E_6+A_2^2 \) |
\(1\) |
|
| 389 |
\( B_3+E_6+A_2^2 \) |
\(1\) |
|
| 390 |
\( A_1+C_2+E_6+A_2^2 \) |
\(1\) |
|
| 391 |
\( C_3+E_6+A_2^2 \) |
\(1\) |
|
| 392 |
\( A_2+E_7+A_2^2 \) |
\(1\) |
|
| 393 |
\( C_2+E_7+A_2^2 \) |
\(1\) |
|
| 394 |
\( A_1+E_8+A_2^2 \) |
\(1\) |
|
| 395 |
\( 2 A_1+2 A_3+A_1^2+A_2^2 \) |
\(Z_2\) |
|
| 396 |
\( 2 A_1+A_2+A_4+A_1^2+A_2^2 \) |
\(1\) |
|
| 397 |
\( A_1+A_3+A_4+A_1^2+A_2^2 \) |
\(1\) |
|
| 398 |
\( 2 A_4+A_1^2+A_2^2 \) |
\(1\) |
|
| 399 |
\( 3 A_1+A_5+A_1^2+A_2^2 \) |
\(Z_2\) |
|
| 400 |
\( A_3+A_5+A_1^2+A_2^2 \) |
\(1\) |
|
| 401 |
\( 2 A_1+A_6+A_1^2+A_2^2 \) |
\(1\) |
|
| 402 |
\( A_2+A_6+A_1^2+A_2^2 \) |
\(1\) |
|
| 403 |
\( A_1+A_7+A_1^2+A_2^2 \) |
\(1\) |
|
| 404 |
\( A_8+A_1^2+A_2^2 \) |
\(1\) |
|
| 405 |
\( A_4+D_4+A_1^2+A_2^2 \) |
\(1\) |
|
| 406 |
\( A_1+A_2+D_5+A_1^2+A_2^2 \) |
\(1\) |
|
| 407 |
\( A_3+D_5+A_1^2+A_2^2 \) |
\(1\) |
|
| 408 |
\( A_2+D_6+A_1^2+A_2^2 \) |
\(1\) |
|
| 409 |
\( A_1+D_7+A_1^2+A_2^2 \) |
\(1\) |
|
| 410 |
\( D_8+A_1^2+A_2^2 \) |
\(1\) |
|
| 411 |
\( 2 A_1+E_6+A_1^2+A_2^2 \) |
\(1\) |
|
| 412 |
\( A_1+E_7+A_1^2+A_2^2 \) |
\(1\) |
|
| 413 |
\( E_8+A_1^2+A_2^2 \) |
\(1\) |
|
| 414 |
\( 3 A_1+2 A_2+2 A_2^2 \) |
\(Z_3\) |
|
| 415 |
\( 2 A_2+A_3+2 A_2^2 \) |
\(Z_3\) |
|
| 416 |
\( A_1+2 A_3+2 A_2^2 \) |
\(1\) |
|
| 417 |
\( 3 A_1+A_4+2 A_2^2 \) |
\(1\) |
|
| 418 |
\( A_3+A_4+2 A_2^2 \) |
\(1\) |
|
| 419 |
\( 2 A_1+A_5+2 A_2^2 \) |
\(Z_3\) |
|
| 420 |
\( A_2+A_5+2 A_2^2 \) |
\(Z_3\) |
|
| 421 |
\( A_1+A_6+2 A_2^2 \) |
\(1\) |
|
| 422 |
\( A_7+2 A_2^2 \) |
\(1\) |
|
| 423 |
\( A_1+A_2+D_4+2 A_2^2 \) |
\(1\) |
|
| 424 |
\( A_3+D_4+2 A_2^2 \) |
\(1\) |
|
| 425 |
\( 2 A_1+D_5+2 A_2^2 \) |
\(1\) |
|
| 426 |
\( A_1+D_6+2 A_2^2 \) |
\(1\) |
|
| 427 |
\( D_7+2 A_2^2 \) |
\(1\) |
|
| 428 |
\( A_1+E_6+2 A_2^2 \) |
\(Z_3\) |
|
| 429 |
\( E_7+2 A_2^2 \) |
\(1\) |
|